

A virtual milling machine model to generate machine-

monitoring data for predictive analytics

David Lechevalier1/2, Seung-Jun Shin1, Jungyub Woo, Sudarsan Rachuri1, Sebti

Foufou3

1National Institute of Standards and Technology, Gaithersburg, USA

david.lechevalier@nist.gov

seungjun.shin@nist.gov

jungyub.woo@nist.gov

sudarsan.rachuri@nist.gov

2Le2i, Université de Bourgogne, Dijon, France

david_lechevalier@etu.u-bourgogne.fr

3CSE Department, College of Engineering, Qatar University, Qatar

sfoufou@qu.edu.qa

Abstract. Real data from manufacturing processes are essential to create useful

insights for decision-making. However, acquiring real manufacturing data can

be expensive and time consuming. To address this issue, we implement a virtual

milling machine model to generate machine monitoring data from process

plans. MTConnect is used to report the monitoring data. This paper presents 1)

the characteristics and specification of milling machine tools, 2) the architecture

for implementing the virtual milling machine model, and 3) the integration with

a simulation environment for extending to a virtual shop floor model. This

paper also includes a case study to explain how to use the virtual milling

machine model for predictive analytics modeling.

Keywords: STEP, MTConnect, milling, data generator, data analytics

1 Introduction

The application of data analytics in manufacturing is one of the most promising

methods to help manufacturers improve the productivity of their systems by saving

money and time or reducing process flaws. Collecting manufacturing data is critical to

make use of the different techniques available for data analytics. In the framework

described in [1], the authors described the importance and the necessity of data

collection to run data analytics in the manufacturing area, which continuously

generates large amounts of data [2]. Data can be in different formats that can be

defined as structured or unstructured. The suggested framework needs to be able to

understand these different data formats to analyze the data. In particular, modern

machines are able to provide real-time data to monitor the values of operating

parameters. This data can be specified in the MTConnect standard [3] in order to

facilitate the communication between equipment and software applications.

However, since acquiring data is still expensive and time consuming, simulation

approaches that can generate data at a lower cost need to be explored. Simulation

approaches have already allowed manufacturers to reduce costs and time at the

factory level [4] by generating simulated data that they can analyze to improve the

performance of their systems. While creating virtual machine models can allow

manufacturers to generate simulated process data, using these models together will

lead to a virtual shop floor model at the production level.

Combining simulation and data analytics at the process level can lead to a process

efficiency improvement at a lower cost. In [5], authors have compared Bayesian

Networks and Artificial Neural Networks for running analytics on real and simulated

data with efficient results to predict the output values.

This paper introduces a virtual milling machine model to generate machine

monitoring data from a process plan. In addition to the model, we also present an

agent-based model including a machine-state-chart diagram. We integrate our virtual

machine model into the agent model to use it in a simulation environment. We show

how the agent-based model and the virtual machine model can be embedded in a

shop-floor-level simulation environment combining discrete event and agent-based

models. Finally, we illustrate how data analytics can be applied.

This paper is organized as follows: Section 2 introduces the characteristics and

specifications of the virtual milling machine model. Section 3 presents the virtual

milling-machine model, and its combination with an agent-based model into a

simulation environment. Section 4 shows how a manufacturer can leverage this

combination and use the generated data to run analytics for system improvement.

2 Specifications of the Virtual Milling Machine Model

In this section, we present the specification of input and output data for our virtual

model. We also introduce the equations needed to compute the power metrics related

to the milling process and finally show the state chart that we define for representing

the behavior of a machine and include our model in a simulation environment.

2.1 Input data and output data: from STEP-NC program file to MTConnect

document

We identify an ISO 14649 STEP-NC [6] program file (henceforth referred to as

STEP-NC file) and MTConnect document respectively as input and output data of our

virtual model. In [7], authors underline that a STEP-NC-based approach is promising

for digital manufacturing while authors emphasize MTConnect capabilities to

improve the interoperability of machine tools in [8]. Numerical control (NC)

programs allow manufacturers to automatically control machine tools. The use of NC

machines and computers in manufacturing led to the development of computer-aided

manufacturing (CAM) where computers interpret CAM files to send a set of

instructions to the NC machines in order to achieve the production defined in the

original CAM file.

MTConnect is an XML-based [9] standard to represent machine monitoring data.

This standard aims to provide interoperability so that manufacturers can monitor

various brands and models of Computer Numerical Control (CNC) machines through

a common interface. By using this standard for the output data, we ensure that the

data will have a well-known structure that facilitates the communication for later uses.

2.2 Machine tool specification for kinematics and dynamics

To virtually model a milling machine, we compute kinematics (e.g., velocity and

position) and dynamics (e.g., force and power) corresponding to the events and

movements of the machine tool. A STEP-NC program specifies a sequence of

machining operations, and is used to create an NC program in the ISO 6983 (G-Code)

format [10]. Meanwhile, an MTConnect document generates continuous snap shots of

a machine tool’s actions and events using time as reference. Thus, for every

instruction of the NC program, we need to compute the corresponding metrics of the

machine tool. Computing these metrics requires equations that are derived from

physical model-based analysis of machine tool metrics. We make a calculation of

power, which indicates the amount of energy consumed per unit-time.

First, we defined a position function by deriving theoretical equations presented in

[11]. This function is presented in Equation (1) assuming that linear velocity has a

trapezoidal profile.

saLisiaLidsasa

aiaLisaa

Lia

tttTTavTtvtatLthenttttttifelse

ttvtatLthenttttifelse

tatLthenttif

),2(5.05.0)(,

)(5.0)(,

5.0)(,0

2

2

2

 , (1)

where L: length from a previous point (mm), t: the current time (ms), ta: acceleration

time (ms), ts: steady-state time (ms), td: deceleration time (ms), vi: velocity on each

axis (m/s).

Using this function, our virtual machine model computes the kinematics that

include linear-axial positions as a function of time. These position data can be used to

detect cutting or non-cutting motions that occur between a work piece and a cutting

tool. The characterization of the motions contributes to determine the power

consumption.

Second, our virtual model computes the machine tool dynamics using theoretical

equations introduced in [12]. The power profile of a single NC code command for

linear movement consists of acceleration, steady and deceleration states. Power

during the steady state varies for cutting and non-cutting motions. During the cutting

motion, the power corresponds to the cutting power, which is caused from cutting

forces, plus the idle power. We use a physics-based equation, as expressed in

Equation (2), to calculate the cutting forces. Equations (3) and (4), respectively,

present the linear-axial and rotary-axial power for a milling machine. Units can be

obtained in the reference paper [12].

bKbhKF

bKbhKF

fefcf

tetct

 (2)

sed

L

d

dL

gf

pfpb

gfs

L

s

sL

sea

L

a

aL

TBw
dt

dw
JT

wT
P

rT
FFd

TT
wT

P

TBw
dt

dw
JT

wT
P

,

/)
2

)(
(,

,

,

,

,

(3)

S

runa,S

d,S

S

cc

s,Sc,S

S

run

s,S

S

runa,S

a,S

w)TT(
P

vF
PP

wT
P

w)TT(
P

2

(4)

2.4 Machine states

To integrate our virtual milling machine model inside an agent-based model, we

develop a state chart that represents the different states of the machine. The model is

presented below in Figure 1.

Figure 1. State chart diagram for a machine

The default machine state is the idling state. As soon as a batch arrives

(represented by the transition batchReception in the figure), the machine goes to the

next state called batchSetup. This state models the required machine setup for

processing the batch. Once the batch is setup, the machine goes to the partSetup state

where the machine sets up each part to execute the needed operations. The next state

called machining represents the milling process. Once the operations have been

executed on the part, the machine goes to the partEjection state that models unloading

of the part. After this state, two alternative paths can be taken by the machine in the

state chart. If there are still parts to process in the batch, the machine goes back to

partSetup. In the other case, the machine goes to the last state, which is the

batchEjection state, when the batch unload step is modeled. After a batch has been

ejected, the machine goes back to the idling state waiting for a new batch.

3 Description of the virtual machine model architecture and

integration in an agent-based model

In the previous section, we have shown the specifications that define our virtual

machine model. In this section, we introduce the architecture of the virtual machine

model that makes it possible to generate machine monitoring data virtually. We then

present the integration of the virtual model inside an agent-based model. We finally

discuss the benefits of this integration.

3.1 Architecture of the virtual machine model

Figure 2 illustrates the process flow (including involved tools and generated

outputs for each step) followed by the virtual milling machine model to generate

MTConnect data. The virtual milling machine model takes, as an input, a STEP-NC

file. The model parses and interprets this file using a toolkit for Parts 10, 11, and 111

(related to milling process data and tools) that is written in C++ and referred to as ISO

14649 Toolkit in the picture. This toolkit has been developed at the National Institute

of Standards and Technology (NIST) for programing with ISO 14649, Parts 10 and

11, and is being applied to study different ISO 10303 [13] application-protocol file

characteristics and their interpretation [14]. Using this toolkit, we can generate the

sequence of G-Code instructions. We developed a physics-based modeler that we

have integrated in our virtual model to transform the G-Code instructions into

machine tool kinematics and dynamics.

Figure 2. Step-by-step procedure of the virtual milling machine model

The computed movement metrics are length, acceleration, velocity, time, cutting,

force and power. Computations are based on the equations introduced in the previous

section. You can see below, in Figure 3, a class diagram representing the movement

structure. For brevity, we show an overview of the class diagram. We define an

abstract class called Movement. This class is extended by another abstract class called

StraightMovement that is itself an extension by two classes called

TraverseStraightMovement and FeedStraightMovement. These two last classes allow

representation as two different movement types for the milling machine. The schema

can be extended to represent additional movement types in the future. All the

computed metrics are also represented as classes and are aggregated to the Movement

class. The class Power is abstract and is extended by two classes: TraversePower and

FeedPower that will represent the power depending on the movement type. The

physics-based modeler instantiates this structure during the computations and

generates a Movement collection that represents the machine tool kinematics and

dynamics.

Figure 3. Class diagram representing the structure of a movement

To generate an MTConnect file corresponding to this STEP-NC file, we generate

time series data representing the current position of the machine tool and the

consumed power of the milling machine. Using the kinematics and dynamics that we

generated in the previous step and an MTConnect generator that we developed as part

of the virtual machine model, we generate MTConnect data representing the tool

position and the consumed power every 100 milliseconds. We store these data in an

MTConnect agent, which is a web service that collects the generated MTConnect

samples. This MTConnect agent provides query functions that can be called to get

specific sets of data previously stored.

3.2 Combination of the virtual machine model into an agent-based model

using a simulated environment

To run our virtual machine model in a simulation environment, we integrate this

virtual machine model in an agent–based model. The software environment called

AnyLogic [15] allows us to extend the states and the transitions of a state chart using

Java code. While implementing the state chart in an agent-based model, we can call

virtual machine model functions by importing a Java ARchive (JAR) file that contains

the needed functions. We first implement the state chart introduced in section 2.4 in

the agent-based model. We extend this state chart by implementing additional Java

code to initialize the parameters needed for the virtual machine model functions.

During the batchSetup state, we get the time needed by the machine to set up the

batch as well as the power consumed during this step by reading the machine

specification described using XML. By following the same steps during the partSetup

state, we generate the values of the machine parameters that depends on the properties

of the material used for this batch. During the machining state, we include the

parameters values inside a STEP-NC file given as an input to the virtual machine

model. Using the appropriate functions, we can compute the machining time and the

consumed power corresponding to the STEP-NC file given as input. In partEjection

state and batchEjection state, we collect time and power consumed to achieve these

ejection operations by reading the machine specification as we do for the setup states.

All the values of time and power are subjects to a standard deviation to represent the

uncertainty at a real machine level. Once a batch has been processed (after the

batchEjection state), we generate Comma Separated Values (CSV) and MTConnect

output files that gives the time and the power consumed by the milling machine.

3.3 Benefits

This approach provides benefits for manufacturing simulation. The simulation

applications reviewed in [16] illustrate the interest in simulation in the manufacturing

area. While simulations for manufacturing operations, such as planning or scheduling

or real-time control, seem to be the most important trend, generating machine-

monitoring data can lead to a more accurate simulation. The agent-based model

implementation allows manufacturers to use the milling model in a very easy way

since the agent-based model can be used directly to represent one machine. Thus, the

virtual milling model generates data during the simulation representing real machine

behavior. Moreover, agent updates are regularly possible. Collecting real data

punctually makes it possible to calibrate the virtual model. It also enables including

realistic noise in the simulated data to give more accuracy to the virtual model.

Finally, the agent-based model can be improved by integrating disturbances such as

machine failure in the state chart.

Extending this approach, providing a library of agents can allow manufacturers to

choose the machine model to represent the machine involved in their manufacturing

systems. Updates on virtual machine models only require a library update. A

manufacturer can use an agent from the library in the simulation without really

knowing how the integrated virtual model is implemented. Finally, different agents

representing the same machine can provide different capabilities depending on the

studied problem such as power consumption, flow capabilities and material

consumption by integrating a different virtual model.

4 Use Case

In this section, we will illustrate how to use the agent-based model to generate

data. We will first present the specification of our use case, and then show the

implementation in the simulation environment. The last part introduces the

application of regression analysis to generate an analytical model.

4.1 Use case scenario

We define a scenario to represent a milling machine in the simulated environment.

In this scenario, a milling machine tool manufactures a steel part, as shown in Figure

4. The process parameters – feed rate, spindle speed, and cutting depth – control the

tool path strategies that are necessary to make the given machining features. We

assign the three process parameters randomly using a uniform distribution within the

ranges given in Table 1. This process plan decision generates STEP-NC files. Each

STEP-NC file is assigned to produce one part.

Figure 4. An example of a milling part

Table 1. Process plan data

Process parameter Unit Lower bound Upper bound

Feedrate mm/s 30 90

Spindle speed rad/s 75.4 226.2

Cutting depth mm 2.5 3.5

4.2 Implementation results

Given the process plan scenario in Section 4.1, we instantiate the agent-based model

in a process flow model to collect MTConnect data. This process flow represents a

flow of batch coming to the milling machine. Our machining model generates

MTConnect documents for every part of the batch. To reproduce a real machine

behavior, using an identical set of process parameters leads to different power values

representing the variation that can occur in a real machine (±10 % uniform-random

deviation during feed movement, and ±5 % uniform-random deviation during traverse

movement). Using the agent-based model, we generate MTConnect time series data

after every part ejection while running the simulation.

Figure 5. Example of simulation at the process flow and the agent levels.

Figure 5 shows the implementation of the scenario in Anylogic at the process and

agent levels. The MTConnect document provides the following set of information:

x_axis_position, x_axis_wattage, y_axis_position, y_axis_wattage, z_axis_position,

z_axis_wattage, c_axis_wattage, electric_wattage and coolant_wattage.

4.3 Predictive modeling using generated data

Using the simulated data, we are able to run regression analysis to generate an

analytical model by using machine learning techniques. This analytical model can

then be used to predict values of the power consumption. After a normalization of the

data, we train a neural network model with the first 500 samples of our simulated

data. We give 300 new samples as inputs of the trained model and compare the

outputs of the model and the simulated data generated by our virtual machine model

using the same input parameters. Figure 6 represents the comparison between the

simulated total power (X-axis) and the predicted total power (Y-axis).

Figure 6. Scatter plot of the simulated and the predicted total power.

As you can see, the plot shows a slightly curved line showing that the predicted

data are really close to the simulated data for the same input parameters. The

coefficient of determination, representing how close the predicted data are to the

simulated data, is 0.986. By applying this approach and after validation, a

manufacturer can also use this model to compare the real outputs with the model

outputs to establish diagnostic on a machine in a manufacturing system. Extending it

to a full manufacturing system will allow a manufacturer to anticipate the behavior of

the system in a simulation environment by taking advantage of the simulated data.

5 Conclusion

In this paper, we introduce a virtual milling machine model that allows us to

generate machine-monitoring data in MTConnect format. We show that we can

integrate this model in a simulated environment to take advantage of the generated

data and generate a predictive model to finally improve or make a diagnostic on a

milling process described in a STEP-NC file. In a future work, integration of

maintenance and failure in our model can make our generation of data more realistic

and improve our simulation. Moreover, taking advantage of our model and other

existing models [17], we will be able to develop a virtual shop floor model.

DISCLAIMER

No approval or endorsement of any commercial product by NIST is intended or

implied. Certain commercial software systems are identified in this paper to facilitate

understanding. Such identification does not imply that these software systems are

necessarily the best available for the purpose.

References

1. Lechevalier, D., Narayanan A., and Rachuri, S.: Towards a domain-specific framework for

predictive analytics in manufacturing. In: 2014 IEEE Conference on Big Data, 2014.

2. Young, M., and Pollard, D.: What businesses can learn from big data and high

performance analytics in the manufacturing industry. Big Data Insight Group, 2012.

3. MTConnect: Part 1-Overview and protocol, Version 1.2.0. MTConnect Institute, 2014.

4. Brown, E., and Sturrock, D.: Identifying cost reduction and performance improvement

opportunities through simulation. In: Winter Simulation Conference, 2009.

5. Perzyk, M., Biernacki R., and Kochański, A.: Modeling of manufacturing processes by

learning systems: The naïve Bayesian classifier versus artificial neural networks. In:

Journal of Materials Processing Technology 164: 1430-1435, 2005.3

6. ISO, ISO 14649: 2003, Industrial automation systems and integration - Physical device

control - Data model for computerized numerical controllers.

7. Yang, W., and X. Xu.: "Modelling machine tool data in support of STEP-NC based

manufacturing." In: International Journal of Computer Integrated Manufacturing, 2008.

8. Vijayaraghavan, Athulan, Sobel, W., Fox, A., Dornfeld, D., & Warndorf, P.: "Improving

machine tool interoperability using standardized interface protocols: MT Connect." In:

International Symposium on Flexible Automation, 2008.

9. XML, XML Specification available at http://www.w3.org/TR/2008/REC-xml-20081126/.

10. ISO, ISO 6983-1: 1982, Numerical control of machines -- Program format and definition

of address words -- Part 1: Data format for positioning, line motion and contouring control

systems

11. Avram, O., and Xirouchakis P.: Evaluating the Use Phase Energy Requirements of a

Machine Tool System. In: Journal of Cleaner Production 19: 699-711, 2011.

12. Altintas, Y.: Manufacturing Automation: Metal Cutting Mechanics, Machine Tool

Vibrations, and CNC Design. Cambridge University Press: Cambridge, 2012.

13. ISO, ISO 10303-1: 1994, Industrial Automation Systems and Integration - Product Data

Representation and Exchange -- Part 1: Overview and fundamental principles.

14. Kramer, T. R., Proctor, F., Xu, X., & Michaloski, J. L.: Run-time interpretation of STEP-

NC: implementation and performance. In: International Journal of Computer Integrated

Manufacturing, Vol. 19, Iss. 6, 2006.

15. Grigoryev, I.. AnyLogic 7 in Three Days: A Quick Course in Simulation Modeling, 2015.

16. Negahban, A., and S. Smith J.: Simulation for manufacturing system design and operation:

Literature review and analysis. In: Journal of Manufacturing Systems 33.2: 241-261, 2014.

17. Shao, G., Shin S., and Jain S.: Data analytics using simulation for smart manufacturing. In:

Proceedings of the 2014 Winter Simulation Conference. IEEE Press, 2014.

http://www.w3.org/TR/2008/REC-xml-20081126/

